演算法與資料結構
  • 簡介
  • 前言
    • 事前準備
    • 資料結構場景
    • 複雜度分析
      • 時間複雜度
      • 空間複雜度
  • 分類題型
    • Array 陣列
      • 88. Merge Sorted Array
      • 1089. Duplicate Zeros
      • 941. Valid Mountain Array
      • 1710. Maximum Units on a Truck
      • 54. Spiral Matrix
      • 73. Set Matrix Zeroes
      • 498. Diagonal Traverse
      • 238. Product of Array Except Self
      • HackerRank Counting Valleys
      • 1089. Duplicate Zeros
    • Backtrack 回溯法
      • 51. & 52. N Queens
      • 37. Sudoku Solver
      • 77. Combinations
      • 39. Combination Sum
        • 40. Combination Sum II
        • 216. Combination Sum III
      • 78. Subsets
        • 90. Subsets II
      • 46. Permutations
        • 47. Permutations II
      • 22. Generate Parentheses
      • 1087. Brace Expansion
      • 332. Reconstruct Itinerary
      • 489. Robot Room Cleaner
      • 17. Letter Combinations of a Phone Number
      • 79. Word Search
        • 212. Word Search II
      • 425. Word Squares
      • 1219. Path with Maximum Gold
      • 247. Strobogrammatic Number II
    • Binary Search 二分搜索
      • Rotated Array 旋轉陣列問題
        • 33. Search in Rotated Sorted Array
        • 81. Search in Rotated Sorted Array II
        • 153. Find Minimum in Rotated Sorted Array
        • 154. Find Minimum in Rotated Sorted Array II
      • 374. Guess Number Higher or Lower
      • 704. Binary Search
      • 34. Find First and Last Position of Element in Sorted Array
      • 69. Sqrt(x)
      • 367. Valid Perfect Square
      • 374. Guess Number Higher or Lower
      • 278. First Bad Version
      • 162. Find Peak Element
      • 852. Peak Index in a Mountain Array
      • 35. Search Insert Position
      • 875. Koko Eating Bananas
      • 1011. Capacity To Ship Packages Within D Days
      • 173. Binary Search Tree Iterator
      • 1586. Binary Search Tree Iterator II
    • Dynamic Programming 動態規劃
      • 509. Fibonacci Number
      • 70. Climbing Stairs
      • 55. Jump Game
      • 62. Unique Paths
      • 64. Minimum Path Sum
      • 174. Dungeon Game
      • 91. Decode Ways
      • 72. Edit Distance
      • 221. Maximal Square
      • 329. Longest Increasing Path in a Matrix
      • 198. House Robber
        • 213. House Robber II
      • 1109. Corporate Flight Bookings
      • 983. Minimum Cost For Tickets
      • 1143. Longest Common Subsequence
        • 583. Delete Operation for Two Strings
        • 712. Minimum ASCII Delete Sum for Two Strings
      • 53. Maximum Subarray
      • 152. Maximum Product Subarray
      • 975. Odd Even Jump
      • 115. Distinct Subsequences
      • 416. Partition Equal Subset Sum
      • 10. Regular Expression Matching
      • 651. 4 Keys Keyboard
    • Hash Table/Set 雜湊表
      • 242. Valid Anagram
      • 49. Group Anagrams
      • 217. Contains Duplicate
        • 219. Contains Duplicate II
        • 220. Contains Duplicate III
      • 187. Repeated DNA Sequences
      • 1170. Compare Strings by Frequency of the Smallest Character
      • 448. Find All Numbers Disappeared in an Array
      • 560. Subarray Sum Equals K
      • 1010. Pairs of Songs With Total Durations Divisible by 60
    • Heap 堆
      • 347. Top K Frequent Elements
      • 692. Top K Frequent Words
      • 973. K Closest Points to Origin
      • 128. Longest Consecutive Sequence
      • 1167. Minimum Cost to Connect Sticks
    • Linked List 鏈結串列
      • 876. Middle of the Linked List
      • 21. Merge Two Sorted Lists
        • 23. Merge k Sorted Lists
      • 148. Sort List
      • 206. Reverse Linked List
        • 92. Reverse Linked List II
    • Stack 棧
      • 20. Valid Parentheses
      • 394. Decode String
      • 84. Largest Rectangle in Histogram
      • 155. Min Stack
    • String 字串
      • 43. Multiply Strings
      • 344. Reverse String
      • 726. Number of Atoms
      • 8. String to Integer (atoi)
      • 12. Integer to Roman
      • 696. Count Binary Substrings
    • Tree 樹
      • Breadth-first search 廣度優先搜索
        • 111. Minimum Depth of Binary Tree
        • 200. Number of Islands
        • 752. Open the Lock
        • 279. Perfect Squares
        • 286. Walls and Gates
        • 417. Pacific Atlantic Water Flow
        • 994. Rotting Oranges
        • 429. N-ary Tree Level Order Traversal
        • 116. Populating Next Right Pointers in Each Node
        • 117. Populating Next Right Pointers in Each Node II
        • 430. Flatten a Multilevel Doubly Linked List
        • 1135. Connecting Cities With Minimum Cost
      • Preorder 前序遍歷
        • 105. Construct Binary Tree from Preorder and Inorder Traversal
        • 144. Binary Tree Preorder Traversal
        • 589. N-ary Tree Preorder Traversal
        • 255. Verify Preorder Sequence in Binary Search Tree
      • Inorder 中序遍歷
        • 94. Binary Tree Inorder Traversal
        • 426. Convert Binary Search Tree to Sorted Doubly Linked List
      • Postorder 後序遍歷
        • 106. Construct Binary Tree from Inorder and Postorder Traversal
        • 145. Binary Tree Postorder Traversal
        • 590. N-ary Tree Postorder Traversal
        • 114. Flatten Binary Tree to Linked List
        • 652. Find Duplicate Subtrees
        • 124. Binary Tree Maximum Path Sum
        • 543. Diameter of Binary Tree
        • 337. House Robber III
      • BST
        • 98. Validate Binary Search Tree
        • 450. Delete Node in a BST
        • 700. Search in a Binary Search Tree
        • 701. Insert into a Binary Search Tree
        • 1373. Maximum Sum BST in Binary Tree
        • 230. Kth Smallest Element in a BST
        • 99. Recover Binary Search Tree
      • Serialization & Deserialization
        • 606. Construct String from Binary Tree
        • 536. Construct Binary Tree from String
        • 297. Serialize and Deserialize Binary Tree
        • 428. Serialize and Deserialize N-ary Tree
      • Graph 圖
        • 1971. Find if Path Exists in Graph
        • 323. Number of Connected Components in an Undirected Graph
        • 547. Number of Provinces
      • 100. Same Tree
        • 572. Subtree of Another Tree
      • 1379. Find a Corresponding Node of a Binary Tree in a Clone of That Tree
      • 226. Invert Binary Tree
      • 104. Maximum Depth of Binary Tree
      • 559. Maximum Depth of N-ary Tree
      • 102. Binary Tree Level Order Traversal
      • 261. Graph Valid Tree
      • 250. Count Univalue Subtrees
      • 222. Count Complete Tree Nodes
      • 112. Path Sum
      • 113. Path Sum II
      • 437. Path Sum III
    • Trie 字典樹
      • 208. Implement Trie (Prefix Tree)
      • 677. Map Sum Pairs
      • 648. Replace Words
      • 588. Design In-Memory File System
      • 642. Design Search Autocomplete System
      • 211. Design Add and Search Words Data Structure
      • 1268. Search Suggestions System
    • Two Pointers 雙指針
      • 977. Squares of a Sorted Array
      • 1095. Find in Mountain Array
      • 27. Remove Element
      • 141. Linked List Cycle
        • 142. Linked List Cycle II
      • 19. Remove Nth Node From End of List
      • 26. Remove Duplicates from Sorted Array
      • 83. Remove Duplicates from Sorted List
      • 283. Move Zeroes
    • Sliding Window 滑動窗口
      • 3. Longest Substring Without Repeating Characters
      • 76. Minimum Window Substring
      • 567. Permutation in String
      • 438. Find All Anagrams in a String
      • 424. Longest Repeating Character Replacement
      • 485. Max Consecutive Ones
      • 1004. Max Consecutive Ones III
      • 904. Fruit Into Baskets
      • 1248. Count Number of Nice Subarrays
      • 1358. Number of Substrings Containing All Three Characters
      • 1234. Replace the Substring for Balanced String
      • 930. Binary Subarrays With Sum
      • 209. Minimum Size Subarray Sum
      • 992. Subarrays with K Different Integers
      • 713. Subarray Product Less Than K
      • 862. Shortest Subarray with Sum at Least K
      • 239. Sliding Window Maximum
      • 159. Longest Substring with At Most Two Distinct Characters
      • 340. Longest Substring with At Most K Distinct Character
      • 992. Subarrays with K Different Integers
    • Bit Manipulation 位元運算
      • 136. Single Number
      • 7. Reverse Integer
      • 191. Number of 1 Bits
    • Math 數學
      • 553. Optimal Division
      • 204. Count Primes
      • 372. Super Pow
      • 829. Consecutive Numbers Sum
      • 1492. The kth Factor of n
    • Other 其他
      • 31. Next Permutation
      • 1446. Consecutive Characters
      • 386. Lexicographical Numbers
      • 269. Alien Dictionary
      • 48. Rotate Image
      • 157. Read N Characters Given Read4
        • 158. Read N Characters Given Read4 II - Call multiple times
      • 246. Strobogrammatic Number
    • Object Oriented Design 物件導向設計
      • 710. Random Pick with Blacklist
      • 380. Insert Delete GetRandom O(1)
      • 271. Encode and Decode Strings
      • 348. Design Tic-Tac-Toe
  • 經典題目
    • Best Time to Buy and Sell Stock 股票買賣問題
      • 121. Best Time to Buy and Sell Stock
      • 122. Best Time to Buy and Sell Stock II
      • 123. Best Time to Buy and Sell Stock III
      • 188. Best Time to Buy and Sell Stock IV
      • 309. Best Time to Buy and Sell Stock with Cool down
      • 714. Best Time to Buy and Sell Stock with Transaction Fee
    • Palindrome 回文
      • 125. Valid Palindrome
      • 680. Valid Palindrome II
      • 266. Palindrome Permutation
      • 9. Palindrome Number
      • 866. Prime Palindrome
      • 5. Longest Palindromic Substring
      • 647. Palindromic Substrings
      • 516. Longest Palindromic Subsequence
      • 1930. Unique Length-3 Palindromic Subsequences
      • 234. Palindrome Linked List
    • Time Intervals 時間區間問題
      • 252. Meeting Rooms
      • 253. Meeting Rooms II
      • 56. Merge Intervals
      • 57. Insert Interval
      • 495. Teemo Attacking
      • 759. Employee Free Time
      • 986. Interval List Intersections
      • 435. Non-overlapping Intervals
      • 452. Minimum Number of Arrows to Burst Balloons
      • 729. My Calendar I
      • 731. My Calendar II
      • 732. My Calendar III
      • 163. Missing Ranges
      • 1024. Video Stitching
    • Calculator 計算機問題
      • 224. Basic Calculator
      • 227. Basic Calculator II
      • 772. Basic Calculator III
    • Add One 加一問題
      • 66. Plus One
      • 67. Add Binary
      • 369. Plus One Linked List
      • 2. Add Two Numbers
        • 445. Add Two Numbers II
      • 989. Add to Array-Form of Integer
    • Clone Graph 複製圖形
      • 133. Clone Graph
      • 1490. Clone N-ary Tree
      • 138. Copy List with Random Pointer
      • 1485. Clone Binary Tree With Random Pointer
    • Cache 快取問題
      • 146. LRU Cache 最久未使用演算法
      • 460. LFU Cache 最近最少使用演算法
    • n Sum 問題
      • 1. 2 Sum
      • 15. 3Sum
      • 18. 4Sum
      • 454. 4 Sum II
      • 167. Two Sum II - Input array is sorted
      • 170. Two Sum III - Data structure design
      • 653. Two Sum IV - Input is a BST
      • 16. 3Sum Closest
      • 259. 3Sum Smaller
      • 16. 3Sum Closest
    • Lowest Common Ancestor of a Binary Tree 最近共同祖先問題
    • The Maze 球滾迷宮問題
      • 490. The Maze
      • 505. The Maze II
    • Find Median 尋找中位數
      • 295. Find Median from Data Stream
      • 4. Median of Two Sorted Arrays
    • Course 課程問題
      • 207. 210. Course Schedule I & II
      • 1136. Parallel Courses
    • Coin Change 零錢問題
      • 322. Coin Change
      • 518. Coin Change 2
    • Binary Indexed Tree 樹狀陣列或二元索引樹
      • 303. Range Sum Query - Immutable
      • 307. Range Sum Query - Mutable
      • 315. Count of Smaller Numbers After Self
    • Longest Increasing Subsequence 最長遞增子序列的問題
      • 300. Longest Increasing Subsequence
      • 354. Russian Doll Envelopes
      • 673. Number of Longest Increasing Subsequence
    • Robot Bounded In Circle 掃地機器人
    • Containing Water 裝水問題
      • 11. Container With Most Water
      • 42. Trapping Rain Water
      • 755. Pour Water
    • Word Ladder 文字梯問題
      • 127. Word Ladder
      • 126. Word Ladder II
    • Egg Drop 高樓扔雞蛋
    • Custom sorting 排序技巧
      • 937. Reorder Data in Log Files
    • Word Break 字串組合問題
      • 139. Word Break
      • 140. Word Break II
      • 472. Concatenated Words
  • 常見演算法
    • Sorting 排序
      • Merge Sort (Accepted)
      • Quick Sort (Accepted)
      • Heap Sort (Accepted)
      • Bubble Sort (TLE)
      • Insertion Sort (TLE)
      • Selection Sort (TLE)
    • Shuffle Array 打亂陣列內的元素
    • 池塘抽樣
      • 382. Linked List Random Node
      • 398. Random Pick Index
  • Python 技巧
    • 陣列複製
    • 矩陣操作
      • 向矩陣中的四個方向移動
      • 矩陣遍歷的方法
Powered by GitBook
On this page
  1. 分類題型
  2. Backtrack 回溯法

51. & 52. N Queens

PreviousBacktrack 回溯法Next37. Sudoku Solver

Last updated 3 years ago

&

這個題目也是透過棋類遊戲的規則所設計出的一個回溯法的問題,如同前言所示,棋類遊戲需要快速的找出幾個可行解,接著在心中的棋盤放下那個旗子,並繼續往下推演,如果推演下去發現並不好或是無法滿足遊戲規則,就換下一個可行解來找。

皇后問題的困難點在於,題目有兩個大方向去思考,第一個是回溯法的邏輯要怎麼處理,第二個是要怎麼處理該棋盤位置皇后是否可以放上去,而這兩個處理的方法又有部份交疊,所以讓這個題目的細節不怎麼好處理。

首先先看一眼皇后在棋盤上的的規則

  1. 同一行不能有皇后,在程式裡面很好透過行的遍歷來處理

  2. 同一列不能有皇后,在程式裡面很好透過列的遍歷來處理

  3. 主對角線上不能有皇后,這沒有這個好處理,晚點再來討論

  4. 反對角線上不能有皇后,這沒有這個好處理,晚點再來討論

了解以上的規則後,就可以開始想我們會怎麼樣的放置皇后,這裡請先忽略第三第四個條件,假設我們在一個位置上放置了皇后,只考慮該行和該列就再也不能放置,我們就可以用以下的方式來走訪。

下面的走訪方式是一列一列的方式往下找下一個可以放的位置,走到該列的時候,就去看哪些行可以放置皇后,並且使用一個記憶體位置去記憶哪些行已經造訪過了。

cols = set()
def backtrack(row):
    # base case 
    # TODO
    for col in range(n):
        if col not in cols:    
            cols.add(col)
            board[row][col] = "Q"

            backtrack(row + 1)

            board[row][col] = "."
            cols.remove(col)

這裡有一個很重要的點,那就是為什麼我們要這樣紀錄?其實我當初在寫的時候有懷疑自己是否真的可以先暫時不處理第三第四個條件的來遍歷?因為如果沒有第三第四個條件,放置的方法其實根本可以照下面這樣寫,只要每次都橫移一格,就一定不會在行列上有皇后。不過這樣可以發現其實也不是回溯法了,就是用遞迴的方式去遍歷而已,所以我才會覺得上面寫的方向,應該是沒有錯的可以繼續擴展。

def backtrack(row, col):
    # base case 
    # TODO
    board[row][col] = "Q"
    backtrack(row + 1, col + 1)

也就是說按照上面的程式,這樣的走訪方式應該是沒有問題的,所以要回來開始處理第三、第四個條件,也就是正對角線和反對角線不能有皇后,這裡是題目最難的地方了,我也就在這裡卡住不知道怎麼走下去,我認為透過觀察是有辦法觀察出來的,可是沒有提示的話很觀察到。

cols = set()
def backtrack(row):
    # base case 
    # TODO
    for col in range(n):
        # TODO:
        # diagonal_is_valid and anti_diagonal_is_valid
        if col not in cols and diagonal_is_valid and anti_diagonal_is_valid:
            cols.add(col)
            board[row][col] = "Q"

            backtrack(row + 1)

            board[row][col] = "."
            cols.remove(col)

這裡有一個二維矩陣的特性,如果知道的話後面的題目就會很好做,這裡我自己定義一件事情,那就是同一的對角線上的元素,我統一通稱他們有一樣的對角線座標,求座標的方式如下:

  • 在同一個正對角線上的元素,其對角線座標可以用行的座標 - 列的座標(或列的座標 - 行的座標 )

  • 在同一個反對角線上的元素,其對角線座標可以用行的座標 + 列的座標(或列的座標 + 行的座標 )

例子

   0    1   2   3  4 
0[[ 0,  1,  2,  3, 4],
1 [-1,  0,  1,  2, 3],
2 [-2, -1,  0,  1, 2],
3 [-3, -2, -1,  0, 1],
4 [-4, -3, -2, -1, 0]]

所以檢查第三第四個條件的方式就是,檢查對角線座標是否有放置過了,檢查的方式和檢查行其實一模一樣。

res = []
board = [['.'] * n for _ in range(n)]
cols = set()
diagonals = set()
anti_diagonals = set()
def backtrack(row):
    # base case 
    # TODO
    for col in range(n):
        curr_diagonal = row - col
        curr_anti_diagonal = row + col
        if (col not in cols and 
                curr_diagonal not in diagonals and 
                curr_anti_diagonal not in anti_diagonals):

            cols.add(col)
            diagonals.add(curr_diagonal)
            anti_diagonals.add(curr_anti_diagonal)
            board[row][col] = "Q"

            backtrack(row + 1)

            board[row][col] = "."
            anti_diagonals.remove(curr_anti_diagonal)
            diagonals.remove(curr_diagonal)
            cols.remove(col)

最後的一步就是要處理最後的終止條件了,終止條件為,如果我們在最後一列可以成功找到一個位置可以放,那我們往下再走一步的時候,列的座標就會超過邊界,於是我們就可以返回結果。

# n - 1 是最後一列
if row == n:
    res.append([''.join(r) for r in board])
    return

最後的程式碼整理起來如下:

class Solution:
    def solveNQueens(self, n: int) -> List[List[str]]:
        res = []
        board = [['.'] * n for _ in range(n)]
        cols = set()
        diagonals = set()
        anti_diagonals = set()


        def backtrack(row):
            if row == n:
                res.append([''.join(r) for r in board])
                return
            for col in range(n):
                curr_diagonal = row - col
                curr_anti_diagonal = row + col
                # a queen has been placed in all directions
                if (col not in cols and 
                    curr_diagonal not in diagonals and 
                    curr_anti_diagonal not in anti_diagonals):

                    cols.add(col)
                    diagonals.add(curr_diagonal)
                    anti_diagonals.add(curr_anti_diagonal)
                    board[row][col] = "Q"

                    backtrack(row + 1)

                    board[row][col] = "."
                    anti_diagonals.remove(curr_anti_diagonal)
                    diagonals.remove(curr_diagonal)
                    cols.remove(col)                    


        backtrack(0)

        return res
51. N-Queens
52. N-Queens